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The three-vertex in the closed half-string field theory and
the general gluing and resmoothing theorem
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† Department of Particle Physics, Rutherford Appleton Laboratory Chilton, Didcot, Oxon
OX11 0QX, UK
‡ Departament de Fı́sica Téorica, Universitat de Valencia Dr Moliner 50, E-46100, Burjassot,
Spain

Received 31 October 1996

Abstract. In this letter we prove that the half-string three-vertex in closed string field theory
satisfies the general gluing and resmoothing theorem. We also demonstrate how one calculates
amplitudes in the half-string approach to closed string field theory, by working out explicitly a
few simple three-amplitudes.

Motivated by the similarities between Yang–Mills theory and Witten’s open string field
theory [1], it was first suggested in [2, 3] and proved rigorously in [4–6], that physical
open strings can be viewed as infinite-dimensional matrices. In particular; the open-string
three-vertex can be represented as a trace [4–7]. This trace can be generalized to represent
anyN -string (N > 3) tree-level scattering amplitude [8]:

AN =
∫ ∞
−∞

dλ1 . . .dλN
SL(2,<) Tr(exp(λ1M)A1 . . .exp(λNM)AN) (1)

whereM is the generator of infinitesimal shifts of the mid-point of the string, so in fact
one is shifting this point to every possible position.

An analogous construction for closed strings was formulated in [8, 9]. Using a functional
approach [8], the analogue of equation (1) for closed strings was shown to give the correct
dual amplitudes. The HS (half-string) operator formalism of a closed string [9] (here after
referred as (I)) indicates that the restricted polyhedra of the classical non-polynomial string
field theory, can be represented as traces of infinite-dimensional matrices, with operator
insertions that reparametrize the half-strings. Also, in (I), the factorization of a closed
string was established.

In this letter, we wish to discuss one further crucial property (which was not addressed
in (I)) that one should expect of a correct formalism of CSFT (closed string field theory).
Namely, the vertices of the theory must satisfy the GGR (general gluing and resmoothing)
theorem of [10]. We will also give a few simple examples of how to calculate closed string
amplitudes. Although some computational details are presented in this letter, this letter is
not meant to be self-contained in the sense that we rely on (I) for notation and indeed for
many other details only alluded to below.

We have seen that the closed HS vertices calculated in (I), i.e.N = 1, 2 and 3, do
agree with the standard results for the closed bosonic string. However, we still have to
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compare HS higher-order vertices with other vertices appearing in the literature. In [10],
LPP (LeClair, Peskin and Preitschopf) define the three-vertex through the relation

〈V123||A〉1|B〉2|C〉3 = 〈T 2h[2A]T h[2B ]h[2C ]〉
where2A is the normal ordered operator that creates the state|A〉

|A〉 = 2A|0〉
andT is anSL(2;C) transformation such thatT 3 = 1. Higher-order vertices are defined
analogously.

It is precisely these type of vertices that are used, as a starting point by Kugo and
Suehiro, to construct the restricted polyhedra and to show that the resulting theory is gauge
invariant [11].

Let us start by comparing the two-point vertex in both formalisms (i.e. the HS one and
the standard one). By definition, the state|V12〉 (or simply |V (2)〉 in our language) imposes
the conditionX1(σ ) = X2(π − σ), which is equivalent to imposing thatα(1)n = α

(2)
−n

at the level of operators. If we write the string coordinate in terms of the complex
coordinatez = exp(τ + iσ) (take τ = 0), then this condition is equivalent to imposing
X1(z) = X2(−1/z). This can be used to define the BPZ† (Belavin, Polyakov and
Zamolodchikov) conjugate to|A〉 as

〈A| = 〈0|I [2A(0)]

whereI (z) = 1/z is a conformal map, i.e.

I [A(z, z∗)] = A′
(

1

z
,

1

z∗

)
.

The (BPZ) inner product is defined as

〈A|B〉 = 〈0|I [2A(0)]2B(0)|0〉 = 〈VAB ||A〉|B〉.
It is easy to see that the two-vertex constructed with LPP’s prescription using theI defined
above, corresponds exactly toV2 in the HS formalism.

A very important property that any vertex must satisfy is that the new vertex produced
by the contraction of two other vertices by the conformal field theory inner product BPZ, is
precisely the one which results from first sewing the corresponding two Riemann surfaces
via the mapI , and then constructing the vertex on that surface. In other words

〈V (4)ABEF | = 〈V (3)ABC |〈V (3)DEF ||V (2)CD〉 (2)

with

〈V1234||A〉1|B〉2|C〉3|D〉4 = 〈T 2h[2A]T h[2B ]IT 2[2C ]IT [2D]〉.
This is the generalized gluing and resmoothing (GGR) theorem forN = 3 [10].

It is not hard to show that the HS vertices constructed in (I) satisfy this theorem. The
proof steams out from the fact that they are written as traces, and that the transformation
from half-strings to full-strings is non-singular. To see this, denote HS string field matrices
asAnm = 〈nm|3)‡ where the indicesn andm refer to the left and right parts of the string.
Completeness of the transformations means that Parseval’s identity,I =∑nm |n;m〉〈n;m|,
† See [12].
‡ Here(3| represent a complete basis of string states.
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works both ways, andI = ∫ D3|3)(3|. The right-hand side of equation (2) can be written
in the HS language (summing over repeated indices) as

V
(3)

125V
(2)†

56 V
(3)

634=
∫

D35D36〈nm|31)〈mk|32)〈kn|35)

×(35|pq〉(36|qp〉〈rs|36)〈sv|33)〈vr|34).

Using (twice) that
∫

D3〈kn|3)(3|pq〉 = δkpδnq (orthogonality), we can write the above
identity as

V
(4)

1234= 〈nm|31)〈mk|32)〈kq|33)〈qn|34)

which is just the left-hand side of (2). This can be generalized to higher point vertices [13].
Notice that this result is valid for both open and closed strings.

In what follows we show how one calculates some simple three-string amplitudes. At
tree level the ghosts decouple and the amplitude is given byA3 = 〈V123|91〉|92〉|93〉, with
|9i〉 the three external states satisfying thephysical conditions

Ln|9〉 = L̃n|9〉 = 0 (L0− 1)|9〉 = (L̃0− 1)|9〉 = 0 (L0− L̃0)|9〉 = 0.

This can be expressed in terms of the closed-string vertex as

A3 = 〈0123|N0 exp 1
2(α

r
nN

rs
nmα

s
m + α̃rnNrs

nm
∗
α̃sm)|91〉|92〉|93〉.

The Neumann coefficients†, Nrs
nm, are related to the change of representation matrices

between HS and FS (full-string) coordinates [9].N0 is the normalization; it is chosen such
that the 3-tachyon amplitude is one. In general for closed stringsP 2 = (4/α′)(1− N) =
8(1− N) whereα′ = 1/2 is our Regge slope convention andN is the number operator
(N = Ñ ). From the last equation one has

〈V3|N0 = 〈0123|N0 exp

(
− ln

33

24

(
3−

3∑
r=1

Nr

)
+ higher oscillators

)

= 〈0123| exp

(
ln

33

24

( 3∑
r=1

Nr

)
+ higher oscillators

)
.

For three tachyonsNr = 0; r = 1, 2, 3, and the above amplitude is one.
Now let us look at the (tachyon, tachyon, graviton) amplitude. The graviton corresponds

to the first excited state (NG = 1) of the closed string; it has zero mass

|9G〉 = Gµ,ν(P )α
3µ
−1α̃

3ν
−1|0〉

whereGµ,ν(P ) is a symmetric traceless tensor. The physical conditions imply

PµGµ,ν = P νGµ,ν = 0.

If we label the two tachyon states byi = 1, 2 and the graviton byi = 3, then the amplitude
is given by

A3(T , T ,G) = 〈0123| exp
1

2

( ∑
n,m>1

αrnN
rs
nmα

s
m +

∑
n,m>1

α̃rnN
rs
nm
∗
α̃sm

+ ln
33

24

3∑
r=1

Nr

)
Gµ,ν(p3)α

3µ
−1α̃

3µ
−1|01〉|02〉|03〉

where
∑3

r=1Nr = 0+ 0+ 1 = 1. Expanding the exponential in a Taylor series, the zero-
order terms vanish because the operatorsα−1 or α̃−1 annihilate the left vacuum. For the

† See also references [8–12] given in [14].



L116 Letter to the Editor

same reason, the only terms that contribute are the ones that contain oneα−1 operator or
one α̃−1, since for example commutingα−1 with oneαn of any of the terms quadratic in
αm’s say, gets rid of the creation operator leaving the annihilation operators free to kill the
right vacuum. Using the results of (I) one obtains

A3(T , T ,G) = 〈0123|
(

33

24

)
exp

(−iαi1√
2
G
(2)′i,j
1 P j + iα̃i1√

2
G
(2)′i,j
1 P j

)
× α3µ

−1α̃
3µ
−1|01〉|02〉|03〉Gµ,ν(p3)

=
(

33

24
〈0123|

)(
1

2
G
(2)′ 3,j
1 P jµG(2)′3,k

1 P kν
)
|01〉|02〉|03〉Gµ,ν(p3).

Using the value ofG(2)′ i,j
1 given in (I), (with U1 = 2/3) we arrive at the final expression

for the amplitude, namely

A3(T , T ,G) = 1

16
(P1− P2)

µ(P1− P2)
νGµ,ν(P3)

= 1

4

(
P1

2
− P2

2

)µ (
P1

2
− P2

2

)ν
Gµ,ν(P3)

where we have made use of the fact thatGµ
µ = 0. This should be compared with the

standard result

Aclosed(P3) = Aopen(P3/2)A
open(P3/2)

∗

whereAopen(P3) is the open string (tachyon, tachyon, vector) amplitude which is given by

Aopen(P3) = 1
2(P1− P2)

µAµ(P3)

whereP1 andP2 are the momenta of the tachyons andAµ(P3) represents the vector particle
(one has to make the identificationGµ,ν ≡ AµAν at the end).

It is satisfying to see that the HS vertices calculated using the HS language do indeed
satisfy the GGR theorem and that the three-amplitudes calculated here agree with the
standard results obtained in the literature. This indicates that the HS approach to string
field theory is on a strong footing.

The work of J Bordes has been supported by CICYT (Spain) under grant No AEN-96-1718.
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